
Retrieving Relationships from Declarative Files

Ciera Jaspan
Institute for Software Research

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

ciera@cmu.edu

Jonathan Aldrich
Institute for Software Research

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

jonathan.aldrich@cs.cmu.edu

ABSTRACT
Software frameworks frequently require developers to inter-
act with them using both OO-based languages and declara-
tive files. The frameworks also require that these declarative
files are consistent with the OO code, but it is currently dif-
ficult to check this in a generic way. Relationships have
shown to be useful for checking constraints within OO code,
and as a declarative file is essentially a static list of rela-
tionships, they may also be useful for checking constraints
within declarative files. However, retrieving relationships
from these files has many potential problems. In this paper,
we show why it would be useful to retrieve relationships from
declarative files, and we explore the hurdles that a solution
will have to overcome.

1. RELATIONSHIPS IN DECLARATIVE
FILES

Traditionally, a developer who intends to use an object-
oriented software framework would do so by using an inver-
sion-of-control design pattern, such as template method or
abstract factory [3, 1]. In these patterns, the developer’s
code, known as a plugin, is called by the framework to
perform customized functionality. However, object-oriented
frameworks are increasingly turning to declarative files to
describe configuration settings, user interfaces, and even the
architecture of the plugin.

A sampling of these frameworks, and the types of files
they require, is shown in Table 1. In order to properly use
these frameworks, the plugin developer must provide both
the object-oriented code and the declarative files, and all the
code and files must be consistent with each other. An incon-
sistency may result in exceptions and unexpected behavior
at runtime, as there is not currently a way to statically check
these files in a generic way.

As an example, we will look at the ASP.NET web applica-
tion framework. A web page using the ASP.NET framework
is made up of two files which represent a view and a model.
The first file, an ASPX file, is a declarative, HTML-based

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RAOOL ’09, July 7 2009, Genova, Italy
Copyright 2009 ACM 978-1-60558-549-9/09/07 ...$10.00.

Table 1: Types of files used by frameworks
Framework OO Language Declarative Files
Eclipse Java XML, Properties
Spring Java XML, Properties,

JSP
ASP.NET C#, VB.NET ASPX, XML
Hibernate Java, C# XML

file which describes the layout of the controls on the page.
The ASPX file represents the “view” component of the plu-
gin, and it is used by the framework to create the view of
the webpage. The model is represented by the“code-behind”
class, written in either C# or VB.NET. This class contains
methods which the framework calls to respond to lifecycle
events and events on the controls.

Consider the following problem found on the ASP.NET
developer forums. A developer complained of a NullRefer-
enceException, and he posted his ASPX file (Listing 1) and
code-behind file (Listing 2) [4]. His page uses a LoginView
control, which allows developers to display some controls if
the user is logged in, and other controls if the user is not
logged in. It achieves this by having two templates which
represent these states.

The developer properly set up a LoginView, including the
DropDownList within it, in the ASPX file. The developer
then went to his code-behind file in Listing 2, and in the load
event, attempted to set up the DropDownList with data. The
typical way to get a sub-control is to call Control.FindControl
with the appropriate name; FindControl will return null only
if there is no sub-control with that name. While this line
of code was throwing a NullReferenceException, the devel-
oper was confused because he had used exactly the name he
declared in the ASPX file.

Another developer responded to the post and explained
this unusual error. The original developer did correctly
set up his controls so that the DropDownList would only
show when the user is logged in. However, the LoggedIn-
Template does more than just make the controls invisible;
the controls will not even exist in memory unless a user
is logged in. Therefore, if a developer wishes to set up
data in these controls, he must do so before the control is
displayed, but only if the user has logged in. This con-
straint makes more sense from a security perspective; we do
not want any chance of the data within that control leak-
ing out of the system, so the control does not exist at all
until necessary. The solution proposed was to first check

Listing 1: ASPX with a LoginView

1 <%@ Page Language=”VB” MasterPageFile=”̃ /MasterPage.master” AutoEventWireup=”false”
2 CodeFile=”setup.aspx.vb” Inherits=”setup” title=”Untitled Page” %>
3 <asp:Content ID=”Content1” ContentPlaceHolderID=”PageContent” Runat=”Server”>
4 <asp:LoginView ID=”LoginView1” runat=”server”>
5 <AnonymousTemplate>
6 You can only set up your account when you are logged in.
7 </AnonymousTemplate>
8 <LoggedInTemplate>
9 <h2>Select a Membership</h2>

10 <asp:DropDownList ID=”DropDownList1” runat=”server”> </asp:DropDownList>
11 <asp:Button ID=”Button1” runat=”server” Text=”Select and Continue” />
12 </LoggedInTemplate>
13 </asp:LoginView>
14 </asp:Content>

Listing 2: Incorrect way of retrieving controls in a LoginView

1 Partial Class setup Inherits System.Web.UI.Page
2 Protected Sub Page Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
3 Dim DropDownListVar As DropDownList = CType(LoginView1.FindControl(”DropDownList1”), DropDownList)
4 DropDownListVar.DataSource = Roles.GetAllRoles()
5 DropDownListVar.DataBind()
6 End Sub
7 End Class

the login status using the page’s Request object. The call
LoginView1.FindControl(”DropDownList1”) can only be exe-
cuted properly if Request.IsAuthenticated is true.

There are several possible ways that the plugin devel-
oper could have made a mistake, in both the ASPX and
VB.NET sides. In our previous work [2], we described a
way to specify this type of constraint on an operations by
using a propositional logic over relationships. These con-
straints are written as annotations by the framework de-
veloper and can be checked by a static analysis. Thus, the
method LoginView.FindControl(String name) might have
a precondition such as:

Name(result, name) ∧
(LoggedInTemplate(this, result) =⇒

Child(page, this) ∧ Request(page, request) ∧
LoggedIn(request))

That is, there must be a control with that name, and if
that control is within the LoggedInTemplate of the Login-
View, then we must also know that the Request object for
the Page knows that there is a user logged in.

In our previous work, we generate these relationships based
on method post-conditions provided by the framework de-
veloper. For example, the framework developer can anno-
tate the method Request.IsAuthenticated to show that when
it returns true, it gives us the relationships Request(page,
request) and LoggedIn(request). However, there is no way to
get some of the other necessary relationships, like Logged-
InTemplate(this, result), as there are no method calls that
would provide those relationships. This information does
exist though; it just exists in the ASPX file. Therefore, we
propose to treat the ASPX file, and other declarative files,
as a static description of relationships.

The ASPX file in Listing 1 defines many relationships be-
tween runtime objects, including instances of the relations
Name, LoggedInTemplate, and Child. If we could retrieve
these out of Listing 1, we would find relationships such as:

• Name(DropDownList1, “DropDownList1”)

• Name(Button1, “Button1”)

• Name(LoginView1, “LoginView1”)

• LoggedInTemplate(LoginView1, DropDownList1)

• LoggedInTemplate(LoginView1, Button1)

• Child(this, LoginView1)

As plugin developers must already write these files, we would
ideally just retrieve the relationships out of the existing files,
without any work on the part of the plugin developer. How-
ever, we have found no existing work to generically retrieve
relationships from declarative files.

In the remainder of this paper, we will describe some hur-
dles which a solution must overcome. While we are currently
working on a solution to retrieve relationships out of XML-
based files, this paper focuses on the problem description
only.

2. FIELDS, REFERENCES, AND OBJECTS
Many declarative files, especially those that describe the

architecture of a plugin, refer to types defined by the OO
code of a plugin. It is common for the declarative files to
uniquely identify an object, declare its type, and define val-
ues for its fields. As the objects are uniquely identifiable,

Listing 3: A snippet of a Spring configuration file

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <!DOCTYPE beans PUBLIC ”−//SPRING//DTD BEAN//EN” ”http://www.springframework.org/dtd/spring−beans.dtd”>
3 <beans>
4 <bean id=”viewQsController” class=”edu.cmu.cs.classquiz.web.QuestionsController”>
5 <property name=”questionManager”><ref bean=”qManager”/></property>
6 </bean>
7 <bean id=”addQuestionValidator” class=”edu.cmu.cs.classquiz.bus.QuestionValidator”/>
8 <bean id=”addQuestionForm” class=”edu.cmu.cs.classquiz.web.AddQuestionController”>
9 <property name=”sessionForm”><value>true</value></property>

10 <property name=”commandName”><value>newQ</value></property>
11 <property name=”commandClass”><value>edu.cmu.cs.classquiz.bus.QuestionCommand</value></property>
12 <property name=”validator”><ref bean=”addQuestionValidator”/></property>
13 <property name=”formView”><value>add question</value></property>
14 <property name=”successView”><value>view questions.html</value></property>
15 <property name=”questionManager”><ref bean=”qManager”/></property>
16 </bean>
17 <bean id=”qManager” class=”edu.cmu.cs.classquiz.bus.QuestionManager”>
18 <property name=”daoManager”><ref bean=”qManagerDao”/></property>
19 </bean>
20 <bean id=”urlMapping” class=”org.springframework.web.servlet.handler.SimpleUrlHandlerMapping”>
21 <property name=”mappings”>
22 <props>
23 <prop key=”/add question.html”>addQuestionForm</prop>
24 <prop key=”/view questions.html”>viewQsController</prop>
25 </props>
26 </property>
27 </bean>
28 <bean id=”viewResolver” class=”org.springframework.web.servlet.view.InternalResourceViewResolver”>
29 <property name=”viewClass”><value>org.springframework.web.servlet.view.JstlView</value></property>
30 <property name=”prefix”><value>/WEB−INF/jsp/</value></property>
31 <property name=”suffix”><value>.jsp</value></property>
32 </bean>
33 ...
34 </beans>

these fields may even refer to other objects in the file. List-
ing 3 shows an example from the Spring framework, where
each bean element is an object that the framework will cre-
ate at runtime. A solution should be able to retrieve rela-
tionships from the connections defined by these fields, both
directly (as in a Validation relationship between addQues-
tionForm and addQuestionValidator, lines 12 and 7) and indi-
rectly (as in a Success relationship between addQuestionForm
and viewQsController through urlMapping, lines 14, 24, and
4).

The entire concept of what defines an object also changes
depending on the declarative file. In ASPX, the entire file
is a single object, which should be checked for consistency
alongside the associated code-behind file. However, in Spring,
each bean is an object. As there may be several objects of
the same type, a solution must keep these relationships sep-
arate, and any consistency checks with the OO code may
need to be repeated for each instance.

3. SUBTYPES AND EXTENSIONS
The declarative files have no notion of type hierarchy,

and this makes it difficult to handle relationships which use
supertypes. Consider a Child relation in ASP.NET which

associates a page with a top-level control. The type of
this relation is Child(Page, Control). Listing 1 implicitly
contains the relationship Child(this, LoginView1), but how
would we retrieve this generically? We have to know that
an asp:LoginView element is associated with a class that
derives from Control; likewise, we must know this about
asp:DropDownList and asp:Button. Enumerating all possi-
bilities would be both cumbersome and incorrect, as a de-
veloper can always create a new subtype of Control with an
unknown element name. Extensions like this are frequent in
ASPX, JSP, and Eclipse XML files, and the extensions are
constrained in the OO code but may take any form in the
declarative file. A solution must be aware of the type hier-
archy, and it must provide a way to handle the extensions
to declarative files.

4. FILESYSTEMS AND URLS
In addition to OO code, the declarative files may refer to

each other through the filesystem, or even through URLs.
In Listing 3, we would like to describe the relationship be-
tween addQuestionForm (line 8) and the form view it is us-
ing (line 13). Line 13 just provides a string, “add question”,
but this is actually a file handle to a view. Lines 28-32 de-

scribe a prefix and suffix for file handles of views, so the
framework knows it can actually find the file at “/WEB-
INF/jsp/add question.jsp”. Therefore, to retrieve this rela-
tionship, we must be able to reach into the filesystem to get
this JSP file.

Why might we care about such a relationship? The file
add question.jsp will assume it can make calls on an object
with a particular name and type. This name and type are
defined in Listing 3, lines 10 and 11. Additionally, the class
QuestionValidator must validate objects of this type, as an
instance of this class is defined as the validator for this con-
troller (line 12). If any of these three files are inconsistent
with each other, the system will produce unusual runtime
exceptions that are difficult to track down. However, if we
can describe these dependencies as relationships, we might
be able to retrieve them from the XML and JSP files and
write propositional logic to check for consistency statically.

5. CONCLUSION
The declarative files that are used with software frame-

works may seem trivial, but there are many constraints sur-
rounding these files. Relationships may be a good match for
describing and checking that declarative files are consistent
with each other and with object-oriented code, especially if
we consider that a declarative file is, in essence, a static list-
ing of the relationships between different objects at runtime.
To generically retrieve these relationships though, we must
be able to handle files that have different senses of what an
object is, have no awareness of a type hierarchy, may be
extended with arbitrary elements, and may reach into the
filesystem or even through URLs to refer to relevant data. It
is not yet clear what form the best solution may take; options
include requiring framework writers to use XSLT and exist-
ing technologies to write the translation, providing a new
specification language for generically translating these files,
or replacing these declarative files altogether with a form
which is both easy to parse and retains the hierarchical and
extensible nature of XML-like files. In any form, if we can
harness this information, it will provide significant leverage
to static analyses by providing them with pre-existing rela-
tionships and allowing them to increase precision with no
additional client-side specifications.

6. ACKNOWLEDGMENTS
This work was supported in part by NSF grant CCF-

0811592, DARPA contract HR00110710019, and a fellow-
ship from Los Alamos National Laboratory.

7. REFERENCES
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.

Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co.,
Inc., 1995.

[2] C. Jaspan and J. Aldrich. Checking framework
interactions with relationships. In ECOOP, 2009.

[3] R. E. Johnson. Documenting frameworks using
patterns. In OOPSLA, 1992.

[4] “sharkman”. Binding to a DropDownList membership
roles, 2006.
http://forums.asp.net/thread/1415249.aspx.

